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Abstract

Owing to the stochastic nature of discrete processes such as photon counts in imaging, real-world data measure-
ments often exhibit heteroscedastic behavior. In particular, time series components and other measurements
may frequently be assumed to be non-iid Poisson random variables, whose rate parameter is proportional to the
underlying signal of interest—witness literature in digital communications, signal processing, astronomy, and
magnetic resonance imaging applications. In this work, we show that certain wavelet and filterbank transform
coefficients corresponding to vector-valued measurements of this type are distributed as sums and differences
of independent Poisson counts, taking the so-called Skellam distribution. While exact estimates rarely admit
analytical forms, we present Skellam mean estimators under both frequentist and Bayes models, as well as
computationally efficient approximations and shrinkage rules, that may be interpreted as Poisson rate estima-
tion method performed in certain wavelet/filterbank transform domains. This indicates a promising potential
approach for denoising of Poisson counts in the above-mentioned applications.

1. INTRODUCTION

Real-world sensing devices are subject various types of measurement noise. For example, it is well known that
the lack of resolution (e.g. quantization), randomness inherent in the signal (e.g. photon/packet arrival), and
variabilities in the measuring devices (e.g. thermal noise, electron leakage) contribute to a significant degradation
of a signal. Estimation of vector-valued data f ∈ RN given noisy observations g ∈ RN therefore plays a prominent
role in digital communications, signal processing, astronomy, and magnetic resonance imaging applications.

To illustrate the difficulties associated with estimating the true underlying signal, suppose we adopt a Bayesian
statistics point of view; that is, we model the signals in terms of the prior probability distribution of the latent
variable (p(f)) and the likelihood of the observation conditioned on the latent variable (p(g|f)). Bayesian sta-
tistical estimation and inference techniques make use of the posterior probability, or the probability of the latent
variable conditioned on the observation (p(f |g)), which is proportional to the product of the prior probability
distribution of the latent variable and the likelihood function. Motivated by the prior knowledge and empirical
studies, statistical modeling of the latent variables in the linear transform domains has enjoyed tremendous
popularity—in particular, filterbank, wavelets, and short-time Fourier transforms provide convenient platforms
for specifying the prior because their coefficients exhibit temporal and spectral locality, sparsity, and energy
compaction properties.1–5

In this paradigm, the special case of additive white Gaussian noise (AWGN) is studied almost exclusively
because the posterior of the transform coefficients is readily accessible when the likelihood function has a closed
form in the transform domain. The assumption that the noise is AWGN, however, is inadequate for many real-
world applications because the measurement noise is almost always dependent on the range space of the signal
f , effects of which permeate across multiple transform coefficients and subbands. For instance, the number
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of electrons or photons encountered in a measuring device during an integration period is a Poisson process
gi|f

iid∼ P(fi) where fi is the rate parameter (the expected electron/photon count per integration period), and is
proportional to the electric current or the light intensity.6

One existing strategy to estimating Poisson rate is to design an invertible nonlinear operator γ : RN → RN
that (approximately) maps the heteroscedastic process to a familiar homoscedastic process:7–9

γ(g)|γ(f) ∼ N (γ(f), I).

An AWGN-based signal estimation technique is used to estimate γ(f) given γ(g), and the inverse transform
γ−1(·) yields an estimate of f . Although this this approach, commonly referred to as variance stabilization,
modularizes the designs of γ(·) and the estimator, the signal model assumed for f no longer holds true for γ(f)
and the optimality of the estimator in the new domain does not translate well to optimality in the range space
of f . Alternatively, the Poisson distribution gi|f ∼ P(fi) tends toward a Normal distribution N (fi, fi) as the
integration period increases. Leveraging existing AGWN paradigm once again, we instead consider the problem
of the form gi|f ∼ N (fi, f̂i), where f̂—a (crude) estimate for f—is assumed known and independent of f .10

This approach is not robust to assumptions, and noise variance estimation employs heuristics. In a companion
manuscript in preparation, we address variance-stabilizing transforms and other such approximations in detail.

In this paper, we derive a representation of vector-valued Poisson counts in the Haar wavelet (HWT) and
Haar filterbank (HFT) transform domains based on the Skellam distribution11—a distribution whose applica-
tions to-date has been limited largely to modeling a difference of Poisson counts12,13 or a gradient of Poisson
corrupted signal.14,15 Though there exist other filterbank/wavelet transforms with better frequency separation,
the advantage to encoding the likelihood function in the transform domain is that the posterior distribution of
the latent variables is readily accessible. In light of this, we propose two strategies for estimating the Poisson
rate from the noise-corrupted signal in the transform domain. First, the structure of noise in the transform
domain admits a variant of Stein’s unbiased risk estimator (SURE) for a transform-based parametric estima-
tor.16–18 Second, we design a Bayesian estimator based on a canonical heavy-tailed (i.e., super-Gaussian) prior
probability distribution. Although the posterior mean estimator of the Poisson rate does not appear to admit
an exact analytical expression, we derive an analytical approximation to the optimal estimator that we show to
be both efficient and practical.

The remainder of this paper is organized as follows. We briefly review SURE shrink19 in Section 2. We
then draw connections between Skellam distribution and HWT/HFT in Section 3, prove basic properties about
the distribution, and derive the unbiased estimate of risk. In section 4 we propose a Bayesian form of Skellam
mean estimator based on Laplacian prior and its analytical approximation. The appendix sections then detail
the proofs and mathematical properties exploited in the main body of the paper.

2. BACKGROUND

Suppose for a moment that f̃ ∈ RN and

g̃ ∼ N (f̃ , σ̃2I).

Let W ∈ RN×N be an orthogonal transform matrix, and where x̃, ỹ ∈ RN , x̃ = Wf̃ and ỹ = Wg̃ are clean
and noisy transform coefficients. Then the orthogonality of transformation W guarantees the following:

ỹ ∼ N (x̃, σ̃2I).

The estimator for x̃ given ỹ can be written as ˆ̃x(ỹ) = ỹ + φ(ỹ). The unbiased estimate of risk, then, is:

E ‖ ˆ̃x(ỹ)− x̃‖2 = E ‖(ỹ − x̃) + φ(ỹ)‖2

= E(ỹ − x̃)2 + 2 E(ỹ − x̃)φ(ỹ) + Eφ(ỹ)2

=σ̃2 + 2σ̃2 E5ỹφ(ỹ) + Eφ(ỹ)2,



where the last equality is a result of Stein’s lemma,16–18

Lemma 2.1. (Stein’s Lemma) Let ỹ|x̃ ∼ N (x̃, σ2). Then for any function φ : R→ R,

E(ỹ − x̃)φ(ỹ) = σ2 E5ỹφ(ỹ)

This is particularly useful for choosing parameters for parametric estimators—especially when the smoothness
of the underlying signal is unknown a priori—as the expectation can be replaced by the ensemble of the observed
noisy coefficients. For example, soft thresholding with a parameter τ is defined as:19

ˆ̃xi(ỹi) = sgn(ỹi)
(
|ỹi| − τ

)
+

,

where ˆ̃x(ỹ) = ỹ + φ(ỹ) and

φ(ỹi) =

{
− sgn(ỹi)τ if |ỹi| ≥ τ
−ỹi if |ỹi| < τ

,
d

dỹi
φ(ỹi) =

{
0 |ỹi| ≥ τ
−1 if |ỹi| < τ

Thus the minimizer of the expected risk

E ‖ˆ̃x(ỹ)− x̃‖2 ≈Nσ̃2 −
∑
|ỹi|<τ

2σ̃2 +
∑
|ỹi|<τ

ỹ2
i +

∑
|ỹi|≥τ

τ2

=Nσ̃2 − 2σ̃2(# of |ỹi| < τ) +
∑
i

min(ỹ2
i , τ

2) (1)

is said to be the “best” choice for τ .

3. SKELLAM DISTRIBUTION AND HAAR WAVELET/FILTERBANK

The Haar wavelet and filterbank transforms are attractive alternatives to the more computationally expensive
joint time-frequency analysis techniques that yield better frequency localization. They enjoy orthonormality,
compact spatial support, and computational simplicity—and the HWT satisfies the axioms of multiresolution
analysis. In this section, we demonstrate that the simplicity of these transforms admits analytical tractability
that enables inference and estimation.

Assume gj |i
iid∼ P(fi) as before. Let W ∈ {0,±1}N×N be the forward HWT or HFT matrix∗, and x = Wf

and y = Wg—in this case, x,y are sums and differences of signal sample values in f , g, respectively. Define
x+
i , x

−
i as positive and negative combinations of f that comprise xi—that is, xi = x+

i − x
−
i , where

x+
i =

∑
j:[W ]i,j=1

fj , x−i =
∑

j:[W ]i,j=−1

fj , (2)

and yi = y+
i − y

−
i defined similarly based on g. Owing to the fact that a sum of independent Poisson counts

constitute another Poisson process, y+
i and y−i exhibit the following behavior:

y+
i |f

iid∼ P(x+
i ), y−i |f

iid∼ P(x−i ).

Thus, the transform coefficient yi = y+
i − y−i is a difference of two independent Poisson counts, termed the

Skellam distribution,11 parameterized by x+
i and x−i :

∀k ∈ Z, p(yi = k;x+
i , x

−
i ) =e−(x+

i +x−i )
∑

n≥min(0,−k)

(x+
i )k+n(x−i )n

(k + n)!n!

=e−(x+
i +x−i )

(
x+
i

x−i

) k
2

Ik

(
2
√
x+
i x
−
i

)
∗With appropriate normalization of rows, W becomes a unitary matrix. However, the connections to Skellam distri-

bution will be made clearer when [W ]ij ∈ {0,±1}, in which case orthogonality of rows/columns is still retained.



where Ik(·) is the modified Bessel function of the first kind.20 Its range is the integers Z.

Define si = x+
i +x−i and ti = y+

i + y−i as the corresponding scaling coefficients of Wf and Wg, respectively,

where ti|f
iid∼ P(si). When W is the forward HFT matrix, in fact, we can show that the density of an observed

transform coefficient yi is parameterized by xi and si only.

Proposition 3.1. Let gj |f
iid∼ P(fj), x = Wf , y = Wg as before. Then

p(yi|f) = p(yi|si, xi).

Proof. The proof is a straightforward consequence of the choice of transform. From the definitions in (2),

p(yi|f) =p(yi|x+
i , x

−
i )

=p

yi
∣∣∣∣∣∣
∑

[W ]i,j=1

fj ,
∑

[W ]i,j=−1

fj


=p

yi
∣∣∣∣∣∣
∑

[W ]i,j=1

[W−1x]j ,
∑

[W ]i,j=−1

[W−1x]j

 .

Define vi and wi as the row vectors from W such that si = vif and xi = wif . Then,

p(yi|f) =p
(
yi

∣∣∣∣(vi + wi

2

)
W−1x,

(
vi −wi

2

)
W−1x

)
=p
(
yi

∣∣∣∣si + xi
2

,
si − xi

2

)
=p(yi|si, xi).

Owing to this parameterization, we expect that a univariate Skellam mean estimator of the form x̂i = E[xi|yi, si]
will yield a satisfactory performance. The likelihood function of the observed filterbank coefficient yi can now
be rewritten as

p(yi|si, xi) = e−si
(
si + xi
si − xi

) yi
2

Iyi

(√
s2i − x2

i

)
.

Plots in Figure 1 illustrate p(yi|xi, si). Note that it is in general asymmetric and heavy tailed—though as s
increases, the Skellam distribution tends toward a Normal distribution. A random variable yi with Skellam
distribution has the following properties:

Proposition 3.2. Let p(y|x, s) be Skellam. Then:

E[y|x, s] =x+ − x− = x

E[(y − x)2|x, s] =x+ + x− = s

d

dx
p(y|x, s) =

p(y − 1|x, s)− p(y + 1|x, s)
2

(3)

d

ds
p(y|x, s) =

p(y − 1|x, s) + p(y + 1|x, s)
2

− p(y|x, s) (4)

(y − x)p(y|x, s) = s
d

dx
p(y|x, s) + x

d

ds
p(y|x, s). (5)

The proofs for the mean and the variance are trivial; the proofs of (3-5) are provided in Appendix A.



(a) Probability Density Function p(y|x, s). (b) Normal probability plot with (x, s) = (2, 7).

Figure 1. Illustrations of Skellam distribution

3.1. Unbiased Estimate of Risk and Shrinkage Operator
Let x̂i indicate the Skellam mean estimator of xi; we rewrite it as x̂i(yi) = yi + φ(yi), where we hereafter omit
the index i from x̂i, xi, yi, si, ti where understood. Its L2 risk is written as:

E ‖x̂(y)− x‖2 = E ‖(y − x) + φ(x)‖2 = E(y − x)2 + 2 E(y − x)φ(y) + Eφ(y)2. (6)

Traditionally, first term is interpreted as a “constant” (i.e. independent of φ), and the last term is “computable”
in terms of our observations. Using Hudson’s results,21 the second term can be rewritten as:

E(y+ − x+)φ(y) = E y+[φ(y)− φ(y − 1)]

E(y− − x−)φ(y) = E y−[φ(y)− φ(y + 1)]

E(y − x)φ(y) = E(y+ − x+)φ(y)− E(y− − x−)φ(y)

= E y+[φ(y)− φ(y − 1)]− E y−[φ(y)− φ(y + 1)]

= E yφ(y)− E[y+φ(y − 1)− y−φ(y + 1)].

Thus the overall risk of the Skellam mean estimator is equivalent to

E ‖x̂(y)− x‖2 = E(y − x)2 + 2 E yφ(y)− E[y+φ(y − 1)− y−φ(y + 1)] + Eφ(y)2.

Note that with the exception of (y − x), the risk of φ(·) does not involve the latent variable x. When x̂ denotes
a parametric estimator, its optimal parameter is said to be the minimizer of the following expression:

R(y) =2 E yφ(y)− E[y+φ(y − 1)− y−φ(y + 1)] + Eφ(y)2.

Below, let x̂ represent the standard soft thresholding operator, x̂(y) = sgn(y)(|y| − τ)+. Suppose we evaluate
the risk in three separate scenarios:

• Suppose |y| < τ—i.e. strictly below the threshold. Then φ(y) = −y and

E
[
‖x̂(y)− x‖2

∣∣∣y < τ
]

= E(y − x)2 + 2 E[−y2 − (y+(−y + 1)− y−(−y − 1))] + E y2

= E(y − x)2 + 2 E[−y2 − ((y+ − y−)(−y) + (y+ + y−))] + E y2

= E(y − x)2 − 2 E t+ E y2

• Suppose |y| > τ—i.e. strictly above the threshold. Then φ(y) = −τ and

E
[
‖x̂(y)− x‖2

∣∣∣y > τ
]

= E(y − x)2 + 2 E[−τy − (−y+τ + y−τ)] + E τ2

= E(y − x)2 + E τ2



Figure 2. Log empirical histogram of the wavelet coefficients corresponding to an image signal, compared to candidate
models for the distribution of coefficients.

• Suppose |y| = τ—without loss of generality we assume y > 0. Then φ(y) = φ(y + 1) = −y = −τ ,
φ(y − 1) = −y + 1 = −τ + 1, and

E
[
‖x̂(y)− x‖2

∣∣∣y = τ
]

= E(y − x)2 + 2 E[−τy − (y+ +−y+τ + y−τ)] + E τ2

= E(y − x)2 − 2 E y+ + E τ2

The overall estimated risk given a soft thresholding method is evaluated empirically using y only as:

E ‖x̂(yi)− x‖2 ≈
∑

(yi − xi)2 +
∑
|yi|<τ

y2
i +

∑
|yi|≥τ

τ2 − 2
∑
|yi|<τ

ti − 2
∑
yi=τ

y+
i − 2

∑
yi=−τ

y−i

In practice, yi = ±τ is an infrequent event—in fact, yi = ±τ is assumed to have zero mass in (1)—and thus we
omit yi = ±τ to simplify the risk functional as:

Rτ (y) =
∑
i

min(y2
i , τ

2)− 2
∑
|yi|<τ

ti, (7)

and the optimal threshold is τ̂ = arg maxτ Rτ (y). An alternative derivation to the soft thresholding risk is
provided in the appendix.

4. BAYESIAN APPROACH TO SKELLAM MEAN ESTIMATION

Suppose we adopt a Bayesian statistical framework—that is, we assume a prior distribution on the underlying
transform coefficients, x = Wf . Determining the appropriate choice p(x) is an active area of research in
statistics and engineering that has shown promising results when applied to denoising for AWGN-type problems.
For example, the canonical forms of heavy-tailed prior model distribution include the generalized Gaussian,
Laplacian,5 and finite and continuous mixtures of Gaussian.1–3—illustrated in Figure 2. As the goal of this paper
is to estimate the transform coefficients x corresponding to the Poisson rate f given the “observed” coefficients
y = Wf , we make no attempt to introduce additional insights into the prior model distribution below. Instead,
we develop estimation techniques aimed at rigorous treatment of the underlying likelihood function, p(y|x).

Below, we derive the Bayesian form of the univariate Skellam mean estimator, where ti is used in practice as



(a) Bayesian estimator with Normal prior. (b) Bayesian estimator with Laplacian prior.

Figure 3. Bayesian estimator x̂(y, s) = E[x|y, s] computed using (blue line) numerical integration and (green line)
analytical approximation. The red 45o line is shown for reference.

a plug-in estimate of si, which is unobservable:

x̂i(yi, si) = E[xi|yi, si]

=
∫
xp(x|y, s)dx

=
∫
xp(y|x, s)p(x|s)

p(y|s)
dx

=

∫
xp(x|s)

(
s+x
s−x

) y
2
Iy
(√
s2 − x2

)
dx∫

p(x|s)
(
s+x
s−x

) y
2
Iy
(√
s2 − x2

)
dx

(8)

To the best of the authors’ knowledge, the existence of conjugate prior to Skellam distribution, which would
make the above integrals analytically tractable, is not yet known. As a result, for a given choice of canonical
prior model distributions p(x) the integrals in x̂(·, ·) must be evaluated numerically. The input-output “coring”
functions corresponding to various choices of prior model distributions are shown in Figure 3.

However, we can show basic properties of the Bayesian estimator that admit meaningful interpretations and
analytical approximations to x̂i(yi, si). We begin by exploring the likelihood function, p(yi|xi, si), using (5):

xp(y|x, s) = yp(y|x, s)− s d
dx
p(y|x, s)− x d

ds
p(y|x, s) (9)

≈ yp(y|x, s)− s d
dx
p(y|x, s). (10)

The approximation above is predicated on the “smoothness” of the likelihood function (i.e. (1/2)[p(y− 1|x, s) +
p(y+ 1|x, s)] ≈ p(y|x, s)), which holds especially well in practice when s is large. This is useful in the context of
the Bayesian estimation:

E[x|y, s] =
∫
xp(y|x, s)dp(x|s)∫
p(y|x, s)dp(x|s)

≈ y − s
∫

[ ddxp(y|x, s)]dp(x|s)
p(y|s)

(11)

Below, we consider two forms of canonical prior distribution: the Normal and the Laplacian.

Gaussian Prior Model
Supposing that p(x|s) = p(x) is a truncated Normal distribution supported on [−r, r], the following interpretation
emerges.



Proposition 4.1. Let p(x|s) be a truncated Normal distribution on [−r, r] and p(y|x, s) be Skellam. Then the
following approximation bound holds:∣∣∣∣∣

∫
[ ddxp(y|x, s)]dp(x)

p(y|s)
− E[x|y, s]

σ2

∣∣∣∣∣ ≤
∣∣∣∣∣ ke−r

2

√
2πσ2p(y|s)

∣∣∣∣∣ .
where k−1 = (2πσ2)−

1
2
∫ r
−r e

−x2/2σ2
dx. The proof of the proposition is provided in the appendix. Combining

(11) and Proposition 4.1 we therefore rewrite the estimator:

E[x|y, s] ≈
(

1 +
s

σ2

)−1

y =
(

σ2

s+ σ2

)
y. (12)

Note that the above closely resembles a linear minimum mean squared error (LMMSE) estimator when s is
interpreted as the variance of the noise.

Laplacian Prior Model

Supposing that p(x|s) = p(x) is a truncated Laplacian distribution supported on [−r, r], the following interpre-
tation emerges.

Proposition 4.2. Let p(x|s) be truncated Laplacian on [−r, r] and p(y|x, s) be Skellam. Then the following
approximation bound holds:∣∣∣∣∣

∫
[ ddxp(y|x, s)]dp(x)

p(y|s)
− p(x > 0|y, s)− p(x < 0|y, s)

σ

∣∣∣∣∣ ≤
∣∣∣∣ ke−r

2σp(y|s)

∣∣∣∣ .
The proof of the proposition is provided in the appendix. Combining (11) and Proposition 4.2 we therefore

rewrite the estimator:

E[x|y, s] ≈ y + (s/σ)[p(x < 0|y, s)− p(x > 0|y, s)]. (13)

A statistical interpretation of (13) can be illustrated via the posterior probability of x (p(x|y, s)) and Figure 4.
Suppose y > 0. The area under this curve to the right of 0 is proportional to the amount of shrinkage towards
zero, while the area to the left of 0 corresponds to the “counter-shrinkage” away from zero. It is therefore easy
to see that large y corresponds to more shrinkage; large s contributes to more shrinkage because s/σ increases
at a rate faster than |p(x < 0|y, s)− p(x > 0|y, s)| < 1. Thus the main features of the estimator are as follows:

• if y large, p(x > 0|y) ≈ 1 and E[x|y, s] ≈ y − (s/σ)

• if y small, p(x < 0|y) ≈ 1 and E[x|y, s] ≈ y + (s/σ).

• the derivative of the estimator at y = 0 is not zero (verifiable via Figure 3).

Coincidentally, the second term of this approximate Bayesian estimator is similar to soft thresholding. Note,
however, that the soft thresholding does not approximate the estimator well near the origin. In light of this,
suppose we consider a computationally efficient piecewise linear approximation to (13):

E[x|y, s] ≈ sgn(y) max
(
λ(s)|y|, |y| − s/σ

)
, (14)

where λ(s) is the derivative of the estimator at the origin (y = 0), which is easily computable. The following
identities are readily verifiable from the definitions:

• p(x > 0|y, s) + p(x < 0|y, s) = 1,

• x̂(0, s) = 0.



Figure 4. Posterior distribution of x, p(x|y, s). When y > 0, the area shaded in blue is proportional to the amount of
shrinkage towards zero, while the area shaded in red corresponds to the “counter-shrinkage” away from zero.

• x̂(y, s) = −x̂(−y, s).

• x̂(y, s) = y + (s/σ)[1− 2p(x > 0|y, s)]

The slope of x̂ evaluated at y = 0 is then

λ(s) =
x̂(1, s)− x̂(−1, s)

2
= x̂(1, s)

=1 + (s/σ)[1− 2p(x > 0|y = 1, s)]

where the integral in p(x > 0|y = 1, s) is independent of the observed data and therefore can be pre-computed
offline (to be used as a small lookup table indexed by s).

Various analytical approximations to the exact Bayesian estimator E[x|y, s] of (8) are shown in Figure 3.
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APPENDIX A. PROOF OF PROPOSITION 3.2
Skellam’s original manuscript11 gives us

Fp(y|x, s) = exp
[
−s+

(
s+ x

2

)
eiω +

(
s− x

2

)
e−iω

]
= exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
(15)

where F denotes a Fourier transform with respect to y. Invoking linearity, we take the derivative in the Fourier
domain:

d

dx
p(y|x, s) =F−1 d

dx
Fp(y|x, s)

=F−1 d

dx
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
=F−1

(
eiω

2
− e−iω

2

)
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
=
p(y − 1|x, s)− p(y + 1|x, s)

2
,



where the last step is a result of the phase shift property:

Fp(y ± 1|x, s) = e∓iω exp
[(s

2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
.

Similarly,

d

ds
p(y|x, s) =F−1 d

ds
Fp(y|x, s)

=F−1 d

ds
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
=F−1

(
eiω

2
+
e−iω

2
− 1
)

exp
[(s

2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]
=
p(y − 1|x, s) + p(y + 1|x, s)

2
− p(y|x, s).

Finally, basic identities of the modified Bessel function of the first kind yield the following:

p(y|x, s) =e−s
(
s+ x

s− x

) y
2

Iy

(√
s2 − x2

)
=e−s

(
s+ x

s− x

) y
2 [
Iy−1

(√
s2 − x2

)
− Iy+1

(√
s2 − x2

)](√s2 − x2

2y

)
=
s+ x

2y
p(y − 1|x, s)− s− x

2y
p(y + 1|x, s)

=
s

2y

[
p(y − 1|x, s)− p(y + 1|x, s)

]
+

x

2y

[
p(y − 1|x, s) + p(y + 1|x, s)

]
. (16)

Substituting (3) and (4), we complete the proof:

yp(y|x, s) =s
d

dx
p(y|x, s) + x

d

dx
p(y|x, s) + xp(y|x, s)

(y − x)p(y|x, s) =s
d

dx
p(y|x, s) + x

d

dx
p(y|x, s).

APPENDIX B. PROOF OF PROPOSITIONS 4.1 AND 4.2

Proposition 4.1

Following the Stein’s lemma strategy,16–18 we take integration by parts:∫ r
−r
(
d
dxp(y|x, s)

)
dp(x)

p(y|s)
=
p(x)p(y|x, s)

∣∣r
x=−r −

∫
p(y|x, s)

(
d
dxp(x)

)
dx

p(y|s)

=
p(x = r)[p(y|x = r, s)− p(y|x = −r, s)] + (1/σ2)

∫
xp(y|x, s)p(x)dx

p(y|s)

=
p(x = r)
p(y|s)

[p(y|x = r, s)− p(y|x = −r, s)] +
E[x|y, s]
σ2

,

where (d/dx)p(x) = (−x/σ2)p(x). Because |p(y|x = r, s)− p(−y|x = r, s)| ≤ 1,∣∣∣∣∣
[∫

[ ddxp(y|x, s)]dp(x)
p(y|s)

]
−
[

E[x|y, s]
σ2

]∣∣∣∣∣ ≤
∣∣∣∣∣ ke−r

2

√
2πσ2p(y|s)

∣∣∣∣∣ .



Proposition 4.2
Recall (15) and p(x) = (k/2σ)e−|x|/σ. Then the quantity,

− sgn(x)p(y|x, s)
σ

+
d

dx
p(y|x, s)

=
− sgn(x)p(y|x, s)

σ
+
p(y − 1|x, s)− p(y + 1|x, s)

2

= F−1

{(
− sgn(x)

σ
+
eiω

2
− e−iω

2

)
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)

]}
is integrable in the following sense:

F−1

∫ r

−r
F
{
− sgn(x)p(y|x, s)

σ
+
p(y − 1|x, s)

2
− p(y + 1|x, s)

2

}(
k

2σ

)
e−
|x|
σ dx

= F−1

∫ r

0

+
∫ 0

−r

(
k

2σ

)(
− sgn(x)

σ
+
eiω

2
− e−iω

2

)
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)− |x|

σ

]
dx

= F−1

(
k

2σ

)
exp

[(s
2

)
(−2 + eiω + e−iω) +

(x
2

)
(eiω − e−iω)− |x|

σ

] ∣∣∣r
x=−r

=
(
ke−r

2σ

)[
e−s

(
s+ r

s− r

) y
2

Iy(
√
s2 − r2)− e−s

(
s− r
s+ r

) y
2

Iy(
√
s2 − r2)

]

=
(
ke−r

2σ

)
[p(y|x = r, s)− p(−y|x = r, s)].

Because |p(y|x = r, s)− p(−y|x = r, s)| ≤ 1,∣∣∣∣∣
[∫

[ ddxp(y|x, s)]dp(x)
p(y|s)

]
−
[∫

sgn(x)p(y|x, s)dp(x)
σp(y|s)

]∣∣∣∣∣ ≤
∣∣∣∣ ke−r

2σp(y|s)

∣∣∣∣ .
The above quantity decays very rapidly as r gets large, and for all practical purposes, this can be approximated
as zero. Expanding the integral completes the proof:∫

sgn(x)p(y|x, s)dp(x)
σp(y|s)

=
∫ r

0

−
∫ 0

−r

p(y|x, s)p(x)
p(y|s)

dx

=
∫ r

0

−
∫ 0

−r
p(x|y, s)dx

=p(x > 0|y, s)− p(x < 0|y, s).
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