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ABSTRACT

This paper presents a new approach to demosaicing of spatially sam-
pled image data observed through a color �lter array, in which prop-
erties of Smith-Barnwell �lterbanks are employed to exploit the cor-
relation of color components in order to reconstruct a subsampled
image. The method is shown to be amenable to wavelet-domain de-
noising prior to demosaicing, and a general framework for applying
existing image denoising algorithms to color �lter array data is also
described. Results indicate that the proposed method performs on
a par with the state of the art for far lower computational cost, and
provides a versatile, effective, and low-complexity solution to the
problem of interpolating color �lter array data observed innoise.

Index Terms— Wavelets, CFA Image, Demosaicing, Denoising

1. INTRODUCTION

In digital imaging applications, data are typically obtained via a
spatial subsampling procedure implemented as a color �lterarray
(CFA), a physical construction whereby each pixel locationmea-
sures only a single color. The most well known of these schemes
involve the primary colors of light: red, green, and blue. Inparticu-
lar, the Bayer pattern CFA [1], shown in Fig. 3, attempts to comple-
ment humans' spatial color sensitivity via a quincunx sampling of
the green component that is twice as dense as that of red and blue.

The termdemosaicingrefers to the inverse problem of recon-
structing a spatially undersampled vector �eld whose components
correspond to these primary colors. It is well known that theopti-
mal solution to this ill-posed inverse problem, in theL 2 sense of an
orthogonal projection onto the space of bandlimited functions sepa-
rately for each spatially subsampled color channel, produces unac-
ceptable visual distortions and artifacts.

Aside from the spatial undersampling inherent in the Bayer pat-
tern, this phenomenon can be attributed to the observation that val-
ues of the color triple exhibit signi�cant correlation, particularly at
high spatial frequencies: such content often signi�es the presence of
edges, whereas low-frequency information contributes to distinctly
perceived color content. As such, most demosaicing algorithms de-
scribed in the literature attempt to make use (either implicitly or ex-
plicity) of this correlation structure in the spatial frequency domain.

A wavelet-based method of decorrelating these components,for
the purposes of ef�cient lossless color image compression,was re-
cently proposed by Zhanget al. [2]. Here we conceive an alternative
motivation for this type of wavelet analysis of CFA images, accord-
ing to fundamental principles of Fourier analysis and �lterbanks.

This structure admits a new framework for wavelet-based CFAim-
age denoising and demosaicing methods, which in turn enables the
application of existing wavelet-based image denoising techniques di-
rectly to sparsely sampled data. This capability is important owing
to the fact that various noise sources inherent to the charge-coupled
device or other imaging technique employed must be taken into ac-
count in practice; any noise reduction procedure should ideally take
place prior to demosaicing (both to improve interpolation results and
to avoid introducing additional correlation structure into the noise).
While earlier work has been focused primarily on demosaicing prior
to denoising, the method we propose suggests a natural way toper-
form wavelet-based denoising and demosaicing together in tandem.

2. SPECTRAL ANALYSIS OF CFA IMAGES

We �rst re-cast the demosaicing problem in light of the observa-
tion in [2] that the CFA image may be viewed as the sum of a fully
observed green pixel array and sparsely sampleddifference images
corresponding to red and blue. Speci�cally, letn =

�

n0 n1
� T

index pixel location and de�nex (n ) =
�

r (n ) g(n ) b(n )
� T

to be the corresponding color triple. If we de�ne differenceimages
� (n ) = r (n ) � g(n ) and� (n ) = b(n ) � g(n ), then the CFA
image is given byy (n ) = g(n ) + � s (n ) + � s (n ), where

� s (n ) :=
�

r (n ) � g(n ) if n0 ; n1 even
0 otherwise

� s (n ) :=
�

b(n ) � g(n ) if n0 ; n1 odd
0 otherwise

are the sparsely sampled difference images.
The fact that difference channels� (n ) and� (n ) exhibit rapid

spectral decay relative to the green channelg(n ) follows from the
(de-)correlation of color content at high frequencies, as explained
in Section 1. This result is well known [3], and may be observed
empirically in Fig. 1(a)-(c), which show the log-magnitudespectra
of g(n ); � (n ); � (n ), respectively denoted byG(! ); A (! ); B (! )
for frequency variable! =

�

! 0 ! 1
� T .

It follows from the composition of the dyadic decimation and
interpolation operators induced by the Bayer sampling pattern that
the Fourier transformY (! ) of y (n ) = g(n ) + � s (n ) + � s (n ) is

Y (! ) = G(! ) +
1
4

1
X

k 0 ;k 1 =0

A (! + � k ) + ( � 1)k 0 + k 1 B (! + � k ).
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Fig. 1. Log-magnitude spectra of a typical color image (“Clown”),with g(n ) component shown in green,� (n ) = r (n ) � g(n ) component
in red, and� (n ) = b(n ) � g(n ) component in blue. Plots (a)–(c) in the �rst row show the green and difference channel log-magnitude
spectra corresponding to (a)G(! ), (b) A (! ), (c) B (! ); plot (d) shows that of the CFA data corresponding toY (! ). Plots (e)–(h) in the
second row show the result of directional �ltering as (e)H LL(! )Y (! ), (f) H LH(! )Y (! ), (g) H HL(! )Y (! ), (h) H HH(! )Y (! ); plots (i)–(l)
in the third row show the corresponding result of subsequentdyadic decimation. The �nal row of plots (m)–(p) show the result of an additional
wavelet decomposition of each subband shown immediately above, corresponding to lowpass �ltering viaH LL and subsequent decimation.
According to their phases (not visible here), appropriate linear combinations of (n)–(p) enable the separation of red and blue color content.

Figure 1(d) showsY (! ) represented as a sum ofg(n ) (green),
� s(n ) (red), and� s (n ) (blue). Note that the rectangular subsam-
pling lattice shifts the spectral content of� (n ) and � (n ) (“alias-
ing”), and also induces spectral copies centered about the set of fre-
quencies! 2 f (0; � ); (�; 0); (�; � )g (“imaging”).

In fact, it is possible to take advantage of the lowpass nature
of these subsampled difference signals to separate the color compo-
nents of data observed through a color �lter array, as we now de-
tail. Recall that a separable wavelet transform is equivalent to a set
of convolutions corresponding to directional �ltering in two dimen-

sions, followed by a separable dyadic decimation about bothspatial
frequency axes. The application of these steps toy (n ) is detailed in
the second row of Fig. 1, which shows the log-magnitude spectrum
after �ltering according to the standard directional wavelet �lterbank
low- and highpass transfer functionsH LL(! ), H HL(! ), H LH(! ),
andH HH(! ), respectively, and the third row of Fig. 1, which shows
the result of subsequent decimation.

The composition of these operators is equivalent to a remap-
ping of each color channel's spatial frequency content to the origin,
and a subsequent dilation of each spectrum. In particular, assum-



Fig. 2. Equivalent �lterbanks for
 (n).

ing that the spectral content of the difference channels is suf�ciently
low relative to that of the green channel, this operation provides a
method for effectively separating the spectral energy of individual
color components, as shown in the �nal row of Fig. 1 (see caption).

3. WAVELET ANALYSIS OF SUBSAMPLED SEQUENCES

Suppose that, as in the case of Daubechies wavelets, the directional
transfer functionsf H LL; H LH; H HL; H HHg introduced in Section 2
comprise a �lterbank satisfying the Smith-Barnwell (S-B) condition.
In this case, the subsampled difference images� s (n ) and � s (n )
may be conveniently represented in the wavelet domain as follows.1

Let f H L(! ); H H(! )g be a S-B �lter pair such thatH H(! ) =
� e� j!m H L(� ! + � ), wherem is an odd integer, and letdi 2
f L; Hg index the �lter passband of the decomposition at leveli . If we
consider a sequence
 (n) and its corresponding even-subsampled
version
 s (n) := 1

2 [
 (n) + ( � 1)n 
 (n)], then the �rst-level �lter-
bank decomposition of
 s (n), denotedW d1 (! ), is equivalent to the
sum of the corresponding decompositions of
 (n) and(� 1)n 
 (n)
(denoted1

2 W 0
d1

(! ) and 1
2 W 00

d1
(! ), respectively). These decompo-

sitions in turn are related to the spectrum� (! ) of 
 (n) as

W 0
d1 (! ) =

1
2

h
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� !
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�
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where�� denotes the complex conjugate, and we have the following
for m odd:

d� 1
1 =

�

H if d1 = L
L if d1 = H ; cd1 (! ) =

�

ej!m if d1 = L
� e� j!m if d1 = H

.

For the case of the Haar wavelet, we haveH d1 = cd1 H �
d1

,
and hence by construction the scaling coef�cient of(� 1)n 
 (n) is
exactly equal to the wavelet coef�cient of
 (n), and vice-versa. It
follows that the multi-level wavelet decomposition of(� 1)n 
 (n) is
equivalent to the same multi-level wavelet packet decomposition of

 (n), but in the reverse order of coarseness to �neness. An example
of this �lterbank structure equivalence is shown in Fig. 2.

4. WAVELET-BASED CFA IMAGE DEMOSAICING

In addition to providing a natural way to recover the spectraassoci-
ated with individual color components of a given CFA imagey (n ),
the �lterbank decomposition of Section 3 also admits a simple for-
mula for reconstructing the complete (i.e., non-subsampled) image
x (n ). Let w y

d1 ;d 2
; w g

d1 ;d 2
; w �

d1 ;d 2
; w �

d1 ;d 2
be the two-level wavelet

(packet) transforms via S-B �lterbanks ofy (n ); g(n ); � (n ); � (n ),
respectively, whered1 ; d2 indicates the �lter orientation. Then (as
may be seen from the example of Fig. 1, particularly Fig. 1(d)), if

1For clarity of exposition, we consider only the univariate case here; the
extension to two dimensions is straightforward.

(a) (b) (c)
Fig. 3. Portion of test data: (a) original “Clown” image, (b) CFA
image, (c) noisy CFA image (� 2 = 625).

the spectral content of the difference channels is suf�ciently low-
pass with respect to that of the green color channel, the following
approximations will be accurate:

w y
LL;LL = w g

LL;LL +
1
4

[w �
LL;LL + w �

L~H;LL + w �
~HL;LL + w �

~H~H;LL]

+
1
4

[w �
LL;LL � w �

L~H;LL � w �
~HL;LL + w �

~H~H;LL]

� w g
LL;LL +

1
4

w �
LL;LL +

1
4

w �
LL;LL, (1)

where~� denotes reversal of a sequence. Similarly,

w y
L~H;LL � w y

~HL;LL �
1
4

[w �
LL;LL � w �

LL;LL] (2)

w y
~H~H;LL �

1
4

[w �
LL;LL + w �

LL;LL]. (3)

Assuming that these approximations hold,x (n) may then be recov-
ered from its wavelet coef�cients as follows:

ŵ g
d1 ;d 2

=

8

<

:

w y
LL;LL � w y

~H~H;LL if d1 = d2 = LL
w y

d1 ;d 2
if d2 6= LL

0 otherwise
(4)

ŵ �
d1 ;d 2 =

�

2w y
~H~H;LL � w y

L~H;LL � w y
~HL;LL if d1 = d2 = LL

0 otherwise

ŵ �
d1 ;d 2

=
�

2w y
~H~H;LL + w y

L~H;LL + w y
~HL;LL if d1 = d2 = LL

0 otherwise
.

5. WAVELET-BASED CFA IMAGE DENOISING

Wavelet-based methods for image denoising have proved immensely
popular in the literature, in part because the resultant shrinkage or
thresholding estimatorŝw are simple and computationally ef�cient,
yet they may enjoy excellent theoretical properties and adapt well to
spatial inhomogeneities. However, as far as the authors areaware,
typical techniques to date have been designed for grayscaleor com-
plete color image data, and hence must be appliedafterdemosaicing.

It is possible to model noisy difference images in the wavelet
domain directly, within the statistical framework of missing data,
though the computational burden of doing so is severe [6]. However,
the arguments put forth in preceding sections regarding thespectral
content of CFA images suggest a much simpler scheme as follows.

First, note that whend2 6= LL, it can be expected that the wavelet
coef�cientsŵ estimated by some shrinkage operator will satisfy the
relationshipŵ g

d1 ;d 2
� ŵ y

d1 ;d 2
. Furthermore, (1) implies thatw y

LL;LL

represents thef LL; LLg subband coef�cients of

g(n ) +
1
4

� (n ) +
1
4

� (n ) =
1
2

g(n ) +
1
4

r (n ) +
1
4

b(n ),

which provides a means of estimating an image's luminance compo-
nent (which in turn exhibits statistics similar to a grayscale image).



(a) (b) (c) (d) (e) (f)
Fig. 4. Portion of reconstructed image “Clown” (� 2 = 625) for (a) [4], (b) SURE+ [4], (c) [5]+ [4], (d) [4]+ [5], (e) [6], (f) Proposed.

Table 1. CFA image denoising evaluated using MSE.
Clown Lena

Method � 2 = 100 � 2 = 625 � 2 = 100 � 2 = 625
SURE 80.04 349.47 84.34 446.39

[5] 55.35 164.42 34.44 91.12
Proposed 50.04 141.10 29.31 92.71

Thus, we may consider obtaininĝw y
LL;LL via a standard denoising

strategy. Finally, the quantities of (2) and (3) correspondto f LL; LLg
subband coef�cients from the difference imagesr (n ) � b(n ) and
� (n ) + � (n ). As smoothed approximate versions of images them-
selves, they too are likely to be amenable to standard wavelet-based
denoising algorithms.

6. EXPERIMENTAL RESULTS

In order to test the proposed denoising and demosaicing schemes for
CFA data, both separately as well as in tandem, a variety of numer-
ical experiments was performed using widely available testimages
commonly referred to as “Clown” and “Lena.” These images were
�rst subsampled according to the Bayer pattern and then corrupted
with additive white Gaussian noise of mean zero (Fig. 3). Recon-
struction methods were implemented using separable Daubechies
wavelets, with cycle-spinning employed for the �rst-leveldecompo-
sition, and the nondecimated wavelet transform for the subsequent.

First, the corrupted data were used to compare the performance
of three wavelet-based algorithms for denoising: the SURE Shrink
method of [7] applied independently to each wavelet coef�cient; a
model based on scale mixtures of Gaussians [5] applied to each of
the de-interlaced color channels of the CFA image in turn; and the
proposed implementation of Section 5 using the wavelet coef�cient
model of [6]. Denoising was performed using a total of three de-
composition levels and a shrinkage operator described in [6], with
the noise variance� 2 estimated from thef HH; HHg subband as in [8].
Table 1 compares the mean-square error (MSE) of the various de-
noised CFA images.

By treating the denoised output̂w y
d1 ;d 2

as input to the demosaic-
ing algorithm proposed in Section 4, a method of combined denois-
ing and demosaicing was obtained and subsequently tested. Table 2
shows the average SCIELAB distance [9] of the output images from
the original input images for the proposed method as well as several
alternatives, and Fig. 4 shows a portion of the various reconstruc-
tions. Performance of the proposed technique is comparableto [6]
but with signi�cantly reduced computational cost; it also improves
noticeably upon the noise observed in Figs. 4(a) and (b), andoffers
enhanced edge preservation relative to alternatives that treat denois-
ing and demosaicing separately, as shown in Figs. 4(c) and (d).

7. CONCLUSION

This paper introduced a framework for wavelet-based color image
analysis and processing, in which properties of Smith-Barnwell �l-
terbanks were employed to exploit the correlation structure of color
components in order to reconstruct a subsampled CFA image. In

Table 2. Denoising+demosaicing evaluated using SCIELAB.
Clown Lena

Method � 2 = 0 � 2 = 625 � 2 = 0 � 2 = 625
[4] 14.52 242.97 1.45 46.02

SURE+ [4] – 255.21 – 59.52
[5]+ [4] – 155.07 – 32.40
[4]+ [5] – 218.18 – 20.26

[6] 12.70 132.53 1.13 18.47
Proposed 19.91 135.46 2.25 19.52

addition to yielding new algorithms for denoising and demosaicing,
this framework was also shown to enable the application of other
wavelet-based denoising algorithms directly to the CFA image data.
Results indicate that the proposed methods perform on a par with
the state of the art for far lower computational cost, and provide a
versatile, effective, and low-complexity solution to the problem of
interpolating color �lter array data observed in noise. A particular
topic of future work will be to extend this methodology to allow for
the optimization of wavelet-based compression schemes in conjunc-
tion with denoising and demosaicing of CFA data.
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