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ABSTRACT

This paper presents a new approach to demosaicing of $patah-
pled image data observed through a color lIter array, in \atpeop-
erties of Smith-Barnwell Iterbanks are employed to explbie cor-
relation of color components in order to reconstruct a suipdad
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This structure admits a new framework for wavelet-based ®fFA
age denoising and demosaicing methods, which in turn esahé
application of existing wavelet-based image denoisingrees di-
rectly to sparsely sampled data. This capability is impartaving
to the fact that various noise sources inherent to the chaygpled
device or other imaging technique employed must be takenaot

image. The method is shown to be amenable to wavelet-doneain dcount in practice; any noise reduction procedure shoulalligéake

noising prior to demosaicing, and a general framework fqtdpg
existing image denoising algorithms to color lter arraytalds also
described. Results indicate that the proposed methodrpgsfon
a par with the state of the art for far lower computationaltcaad
provides a versatile, effective, and low-complexity signtto the
problem of interpolating color Iter array data observedchioise.

Index Terms— Wavelets, CFA Image, Demosaicing, Denoising

1. INTRODUCTION

In digital imaging applications, data are typically obt&invia a
spatial subsampling procedure implemented as a color dreay
(CFA), a physical construction whereby each pixel locatioea-

place prior to demosaicing (both to improve interpolatiesuits and
to avoid introducing additional correlation structureoithe noise).
While earlier work has been focused primarily on demaosagigirior
to denoising, the method we propose suggests a natural werto
form wavelet-based denoising and demosaicing togethamnighem.

2. SPECTRAL ANALYSIS OF CFA IMAGES

We rst re-cast the demosaicing problem in light of the olbser
tion in [2] that the CFA image may be viewed as the sum of a fully
observed green pixel array and sparsely samgl#drence images

T

corresponding to red and blue. Specically, let= no n;
index pixel location and de nx(n) = r(n) g(n) b(n) T

sures only a single color. The most well known of these sckemeyq, pe the corresponding color triple. If we de ne differerioeages

involve the primary colors of light: red, green, and blue phrticu-
lar, the Bayer pattern CFA [1], shown in Fig. 3, attempts topte-
ment humans' spatial color sensitivity via a quincunx sangpbf
the green component that is twice as dense as that of red aad bl

The termdemosaicingefers to the inverse problem of recon-
structing a spatially undersampled vector eld whose congras
correspond to these primary colors. It is well known that apé-
mal solution to this ill-posed inverse problem, in thé sense of an
orthogonal projection onto the space of bandlimited fuomisepa-
rately for each spatially subsampled color channel, presumac-
ceptable visual distortions and artifacts.

Aside from the spatial undersampling inherent in the Baygr p
tern, this phenomenon can be attributed to the observatatrval-
ues of the color triple exhibit signi cant correlation, paularly at
high spatial frequencies: such content often signi es tfesence of
edges, whereas low-frequency information contributesigtindtly
perceived color content. As such, most demosaicing alyostde-
scribed in the literature attempt to make use (either initplior ex-
plicity) of this correlation structure in the spatial fremnecy domain.

A wavelet-based method of decorrelating these componfents,
the purposes of ef cient lossless color image compressi@s re-
cently proposed by Zharet al.[2]. Here we conceive an alternative
motivation for this type of wavelet analysis of CFA imagesc@d-
ing to fundamental principles of Fourier analysis and kanks.

(n)=r(n) g(n)and (n)= b(n) g(n),thenthe CFA
imageis givenby(n)= g(n)+ s(n)+ s(n), where
(n) = r(n) g(n) ifng;nieven
s\ 0 otherwise
(n) = b(n) g(n) ifng;n; odd
sV 0 otherwise

are the sparsely sampled difference images.

The fact that difference channelgn) and (n) exhibit rapid
spectral decay relative to the green charg(gl) follows from the
(de-)correlation of color content at high frequencies, jdaned
in Section 1. This result is well known [3], and may be obsdrve
empirically in Fig. 1(a)-(c), which show the log-magnitusieectra
ofg(n); (n); (n),respectively denoted @ (! );A(! );B(!)
for frequency variablé = 1o !4 T

It follows from the composition of the dyadic decimation and
interpolation operators induced by the Bayer samplingepatthat
the Fourier transforny (! ) ofy(n)= g(n)+ s(n)+ s(n)is

1
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Fig. 1. Log-magnitude spectra of a typical color image (“Clownjth g(n) component shown in green,(n) = r(n) g(n) component
inred, and (n) = b(n) g(n) component in blue. Plots (a)—(c) in the rst row show the gremd difference channel log-magnitude
spectra corresponding to (& (! ), (b) A (! ), (c)B (! ); plot (d) shows that of the CFA data correspondingrt@ ). Plots (e)—(h) in the
second row show the result of directional Iteringaske) (! )Y (! ), OH w(' )Y (1), (@H (! )Y (M), (h)H u{! )Y (! ); plots (i)—(1)

in the third row show the corresponding result of subseqdgatlic decimation. The nal row of plots (m)—(p) show theuk®f an additional
wavelet decomposition of each subband shown immediatayeatzorresponding to lowpass ltering vid . and subsequent decimation.
According to their phases (not visible here), approprietedr combinations of (n)—(p) enable the separation of nebléue color content.

Figure 1(d) showsy (! ) represented as a sum gfn) (green), sions, followed by a separable dyadic decimation about pé#tial
s(n) (red), and s(n) (blue). Note that the rectangular subsam- frequency axes. The application of these steps(to) is detailed in

pling lattice shifts the spectral content ofn) and (n) (“alias-  the second row of Fig. 1, which shows the log-magnitude spect

ing”), and also induces spectral copies centered abouethef fre-  after Itering according to the standard directional watelterbank

quencied 2f(0; );(; 0);(; )g(‘imaging”). low- and highpass transfer functiohs (! ), Hu(! ), H (! ),

andH w{! ), respectively, and the third row of Fig. 1, which shows
In fact, it is possible to take advantage of the lowpass Baturthe result of subsequent decimation.

of these subsampled difference signals to separate theamitpo-

nents of data observed through a color Iter array, as we new d The composition of these operators is equivalent to a remap-

tail. Recall that a separable wavelet transform is equitaiea set  ping of each color channel's spatial frequency content ¢odtigin,

of convolutions corresponding to directional ltering iwo dimen-  and a subsequent dilation of each spectrum. In particussyra-
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Fig. 3. Portion of test data: (a) original “Clown” image, (b) CFA
image, (c) noisy CFA image & = 625).

Fig. 2. Equivalent Iterbanks for (n).

ing that the spectral content of the difference channelsfisiently

low relative to that of the green channel, this operationviples a  the spectral content of the difference channels is suftjerow-

method for effectively separating the spectral energy dividual pass with respect to that of the green color channel, theviig
color components, as shown in the nal row of Fig. 1 (see @ti  pproximations will be accurate:

3. WAVELET ANALYSIS OF SUBSAMPLED SEQUENCES

Suppose that, as in the case of Daubechies wavelets, thotiofia 1
transfer functiond H (; H 14 H wg H mig introduced in Section 2 + = . +
comprise a Iterbank satisfying the Smith-Barnwell (S-Bjndlition. g Wi Wi Wi ]
In this case, the subsampled difference imageén) and s(n)
may be conveniently represented in the wavelet domain iswef
LetfH (! );Hw(! )g be a S-B lter pair such thaH (! ) =

e ™ H. (! + ), wherem is an odd integer, and le 2
fL; Hyindex the Iter passband of the decomposition at lavef we
consider a sequence(n) and its corresponding even-subsampled
version s(n) = %[ (n)+( 1" (n)], then the rst-level lter- y 1 N 3
bank decomposition ofs(n), denoted/ 4, (! ), is equivalent to the Weee Wi+ Wogul: ®)
sum of the corresponding decompositions ¢h) and( 1)" (n)
(denotedi W ¢, (1) and2W {%(! ), respectively). These decompo-
sitions in turn are related to the spectrur@l ) of (n) as

1
Yy  —\0
Wi =W + Z[WLL;LL Wit Wep + W]

1 1
WP+ ZWLL;LL + ZWLL;LLv 1)

where~denotes reversal of a sequence. Similarly,

1
W WaL-LL Z[W wee Wil (2

y
LHLL

Assuming that these approximations holdn) may then be recov-
ered from its wavelet coef cients as follows:

0 1 | 1 1 I WKL;LL W#tLL |f dp = dx = LL
Wa ()= 35 Ha 3 - +Hg S+ =+ w4, = WY 4 if d2 & LL (4)
2 2 2 2 2 1:d2 (1) 2 herwi
00/, 1 ’ I I y | | otherwise
Wq (1)= = —+ — + = —+ . _ _
ds ( |) 3 d: 2" 2 ! a5 2 R, = Wl Wl Wl ifdi=dp=LL
1,02 .
=g Hot 53 3 *Heo 5+ St , X , 9theﬂlee
W . = QWi t Wi T Wy ifdi= .dz = LL
where denotes the complex conjugate, and we have the following ~ 992 0 otherwise
for m odd:
qio Mid=L L g ifdy = L 5. WAVELET-BASED CFA IMAGE DENOISING
! L ifd=H"' "% e!™ ifdi=H Wavelet-based methods forimage denoising have proved ivehe
popular in the literature, in part because the resultarinkshge or
For the case of the Haar wavelet, we ha¥@, = Ca;Hq,,  thresholding estimator$ are simple and computationally ef cient,

and hence by construction the scaling coef cient(ofl)" (n) is  yet they may enjoy excellent theoretical properties angall to
exactly equal to the wavelet coef cient of(n), and vice-versa. It gpatial inhomogeneities. However, as far as the authoravaage,
follows that the multi-level wavelet decomposition(of1)" (n) is typical techniques to date have been designed for grayscaiem-
equivalent to the same multi-level wavelet packet decoitipasof plete color image data, and hence must be applitst demosaicing.

(n), butin the reverse order of coarseness to neness. Anexampl ¢ is possible to model noisy difference images in the wavele
of this Iterbank structure equivalence is shown in Fig. 2. domain directly, within the statistical framework of misgidata,

4. WAVELET-BASED CFA IMAGE DEMOSAICING though the computational burden of doing so is severe [6jvéver,
the arguments put forth in preceding sections regardingpleetral
content of CFA images suggest a much simpler scheme as follow

First, note that whed, 6 LL, it can be expected that the wavelet
coef cientsW estimated by some shrinkage operator will satisfy the
relationshipfg ,,  W{ 4,. Furthermore, (1) implies that{,,
represents thelLL; LLg subband coef cients of

In addition to providing a natural way to recover the speassoci-
ated with individual color components of a given CFA image ),
the Iterbank decomposition of Section 3 also admits a sierfolr-
mula for reconstructing the complete (i.e., non-subsad)pleage
x(n). Letwy .4 ;W 4, Wa,a,5 Wy, q, PE the two-level wavelet
(packet) transforms via S-B lterbanks gi{n);g(n); (n); (n),
respectively, wherel;; do indicates the lter orientation. Then (as 1 1 _1 1 1

may be seen from the example of Fig. 1, particularly Fig. i.(d) g(n)+ 1 (n)+ 1 (n)= Eg(n)+ Zr(n)+ Zb(n)'

1For clarity of exposition, we consider only the univariatese here; the ~ Which prQVid?S ameans Qf es“maFmQ an .image's Iuminellnmpm
extension to two dimensions is straightforward. nent (which in turn exhibits statistics similar to a grayedanage).
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Fig. 4. Portion of reconstructed image “Clown”{ = 625) for (a) [4], (b) SURE+ [4], (c) [5]+ [4], (d) [4]+ [5], (e) [6] (f) Proposed.

Table 1. CFA image denoising evaluated using MSE. Table 2. Denoising+demosaicing evaluated using SCIELAB.

Clown Lena Clown Lena

Method 2=100 %=625| 2=100 2=625 Method =0 2=625| 2=0 %=625
SURE 80.04 349.47 84.34 446.39 [4] 14.52 242.97 1.45 46.02

[5] 55.35 164.42 34.44 91.12 SURE+ [4] - 255.21 - 59.52
Proposed|| 50.04 141.10 29.31 92.71 [5]+ [4] - 155.07 - 32.40

, . , N [4]+ [5] - 218.18 - 20.26

Thus, we may consider obtaining{,.,, via a standard denoising 6] 12.70 132.53 1.13 18.47
strategy. Finally, the quantities of (2) and (3) correspturfd_L; LLg Proposed 19.91 135.46 25 19.52

subband coef cients from the difference imaggs) b(n) and
(n)+ (n). As smoothed approximate versions of images them-addition to yielding new algorithms for denoising and deaicisg,
selves, they too are likely to be amenable to standard wabeked this framework was also shown to enable the application bért
denoising algorithms. wavelet-based denoising algorithms directly to the CFAgemdata.
Results indicate that the proposed methods perform on a lar w
the state of the art for far lower computational cost, andriple® a
versatile, effective, and low-complexity solution to thelplem of

6. EXPERIMENTAL RESULTS

In order to test the proposed denoising and demosaicingreehéor ) : - €
CFA data, both separately as well as in tandem, a variety wfenu mte_rpolatlng color Ite_r array data obsz_erved in noise. Artpaular
ical experiments was performed using widely available itesiges ~ topic of future work will be to extend this methodology tocil for
commonly referred to as “Clown” and “Lena.” These imagesever the optimization of wavelet-based compression schemesrijuc-
rst subsampled according to the Bayer pattern and therupted  tion with denoising and demosaicing of CFA data.
with gdditive white Gaussian noise of mean zero (Fig. 3). c_mec 8. REFERENCES
struction methods were implemented using separable Dhidsec
wavelets, with cycle-spinning employed for the rst-lewlEcompo-
sition, and the nondecimated wavelet transform for the esulosnt.
First, the corrupted data were used to compare the perfagnan
of three wavelet-based algorithms for denoising: the SURENE
method of [7] applied independently to each wavelet coeintj a
model based on scale mixtures of Gaussians [5] applied to eac (3]
the de-interlaced color channels of the CFA image in turmf te
proposed implementation of Section 5 using the wavelet cieet
model of [6]. Denoising was performed using a total of three d
composition levels and a shrinkage operator described]jmjigh [4]
the noise variance? estimated from théHHHHj subband as in [8].
Table 1 compares the mean-square error (MSE) of the varieus d Image Processingvol. 11, no. 9, pp. 997-1013, September
noised CFA images. 2002.

By treating the denoised outpdt;, ;, as input to the demosaic- [5] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-
ing algorithm proposed in Section 4, a method of combinedisen celli, “Image denoising using scale mixture of Gaussianthién
ing and demosaicing was obtained and subsequently tesibte T wavelet domain,” IEEE Trans. Image Processingol. 12, no.
shows the average SCIELAB distance [9] of the output imag®s f 11, pp. 1338-1351, November 2003.

ematives, and Fig. 4 shows 4 portion of he vrious rarmg. 16 € Hirakawa and X .. Meng, ‘An erpirical Bayes EV-wavel
tions. Performance of the proposed technique is compatalj& uni ca_tl_on f”or 5|multallneous denoising, mte_rpolatmndémr de-
but with signi cantly reduced computational cost; it alsopgroves mosammg, IEEE Intl C9nf Image Processmgpc_tober 2006.
noticeably upon the noise observed in Figs. 4(a) and (b)offieds  [7] David L. Donoho and lain M. Johnstone, “Adapting to unkm
enhanced edge preservation relative to alternativesresetdenois- smoothness via wavelet shrinkageJournal of the American
ing and demosaicing separately, as shown in Figs. 4(c) gnd (d Statistical Associatignvol. 90, no. 432, pp. 1200-1224, 1995.
[8] S.B.Chang, B. Yu, and M. Vetterli, “Spatially adaptivavelet

thresholding with context modeling for image denoisingEE
Trans. Image Processingol. 9, no. 9, pp. 1522-1531, 2000.

[9] X.Zhang and B. Wandell, “A spatial extension of CIELABrfo
digital color image reproduction,Proc. Soc. Inform. Display
96 Digest pp. 731-734, 1996.

[1] B. E. Bayer, “Color imaging array,” US Patent 3 971 065769

[2] N. Zhang and X. Wu, “Lossless compression of color mosaic
images,” |IEEE Trans. Image Processingol. 15, no. 6, pp.
1379-1388, June 2006.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schagerd

R. M. Mersereau, “Demosaicking: Color lter array interpo-
lation in single chip digital camerasEEE Signal Processing
Magazine vol. 22, no. 1, pp. 44-54, January 2005.

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color
plane interpolation using alternating projectiont£EE Trans.

7. CONCLUSION

This paper introduced a framework for wavelet-based catage
analysis and processing, in which properties of Smith-#ath |-
terbanks were employed to exploit the correlation stréctfrcolor
components in order to reconstruct a subsampled CFA image. |



