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ABSTRACT

Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the
photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian
noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the
overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though
additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely
used models to approximate the actual sensor noise distribution, the justification given to these types of models
are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of
random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to
real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise
model.
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1. INTRODUCTION

Rapid deployment of consumer and professional-grade digital cameras have spurred innovations in electronics in
recent years. Yet, noise is present in all images captured by image sensors. Therefore, whether it be everyday
snapshots or professional photography, noise is an inconvenient fact of digital photography that will continue to
require our attention.

Image sensor noise is typically classified into the following categories: fixed pattern noise, banding noise, and
random noise (this article focuses on the characterization of random noise). Although shot noise, thermal noise,
saturation, and read noise are well-documented sources of random noise, other sources of signal-dependent noise
such as Fano noise and quantization also contribute to the overall noise profile. We will briefly review various
sources of noise (discussing stochastic models for each if known) in Section 2.

Appealing to the fact that variance of the sensor measurements typically scales linearly with the signal
strength, two widely used models to approximate the sensor noise distribution are the additive Gaussian noise
with signal-dependent noise variance (SD-AWGN) and Poisson corruption. The second order moment matching,
however, does not capture the entire noise distribution (e.g. tail behavior) that is critical to the success of
image denoising techniques. Section 3 takes aim at a more thorough comparisons of SD-AWGN and Poisson
distributions (i.e. not just variance matching).

We repeat the assessment of approximated distributions in the wavelet transformed coefficients in Section 4.
Under this scenario, we compare the wavelet noise to SD-AWGN as before, as well as to the Irwin and Skellam
distributions—said to be the distribution of noise in Haar wavelet coefficients when the pixel domain signal
suffers Poisson corruption.

2. BACKGROUND: SOURCES OF IMAGE SENSOR NOISE

Image sensor noise is generally classified into three categories. The so-called fixed pattern noise is a pixel-wise
bias introduced to sensor measurements owing to manufacturing variabilities. Photoelectricity is typically read
out in raster order by a bank of A/D converters operating in parallel, result of which is the banding noise
caused by the per-line biases of the hardware. Fixed pattern and banding can be reduced by imposing strict
manufacturing tolerance. Signal processing techniques to remove the fixed pattern and banding noise have been



proposed previously.1–3 Because the noise is largely deterministic or repeatable, noise of these types behave
predictably.

The third category of noise is the so-called random noise—sources include photon emission, photoelectric
effects, dark current, thermal noise, etc. As described by quantum electrodynamics, specular reflection and
refraction that occurs as a result of interactions between the light and matter is a form of electron-positron
annihilation. The resultant distribution of photons emitted is referred to as shot noise and is classically modeled
as Poisson.4 As such, the variance of the number of photons accumulated during sensor integration scales
linearly with the underlying light intensity (and the signal-to-noise power ratio is inversely proportional to the
light intensity).

Light intensity measurements are made by recapturing photons (a process known as photon transfer), and
photodiode is the most commonly found integrating detector for converting photons to current4 (where the
actual pixel value is a measurement of voltage across a capacitor that accumulates the charge). If each photon
generates exactly one electron, then the photon transfer is known as a pair production and it is a deterministic
process. Indeed, exactly one electron-hole pair is produced when the momentum of one photon is absorbed, and
in this case the photocurrent scales exactly as the number of photons. However, some photon energy is used
for breaking covalent bond and causing lattice vibration—a phenomenon known as photoelectric effect. This is
stochastic photon transfer that also results in photocurrent, where the average number of electrons generated by
photon arrival is proportional to the quantum efficiency.

Drawing on the work of Fano,5 a canonical measure of the stochasticity of integrating detectors is a ratio
κ of noise variance over signal strength (κ = 0 corresponds to the deterministic process of electron-hole pair
production; on other hand, κ = 1 denotes Poisson distribution). The Fano factor for silicon (and by extension,
Fano factor for CMOS sensor) is κ = 0.12, meaning that the photon transfer in a typical image sensor results in
heteroskedastic noise.

Besides the noise associated with photon recapture via an integrating detector device, there are a number of
sources for electrical noise on a typical sensor. The dark current stemming from in-circuit electron excitation
and source follower results in thermal noise, whose power is proportional to the exposure time but is typically
independent of the signal strength. Reset noise is the result of the improperly discharged capacitors, where
measurement biases are introduced by the electrical charges previously held by the capacitors. Impreciseness
caused by rounding and truncation during digitization of analog voltage is called quantization error, where the
distribution of the difference between the actual analog signal value and quantized digital signal value is often
approximated by additive white uniform distribution (though technically signal-dependent error).

Continuing hardware improvements have attenuated dark current and thermal noise significantly, and quan-
tization error can be reduced with increased bitrate. However, photon emission and photoelectric effects are the
foundations of the ways in which quantum mechanics enable image sensors that cannot be eliminated. Hence
random noise is a “necessary evil” of image sensors that cannot be addressed by hardware improvements alone.

3. APPROXIMATION TO IMAGE SENSOR NOISE

3.1 Empirical Sensor Noise

We captured Macbeth ColorChecker using Nikon D90, Canon 5D Mark II, and Sony α57 in raw sensor format.
They were captured under various ISO settings, and red, blue, and two green channels were separated (i.e. no
demosaicking). Empirical mean and variance for each squares in the ColorChecker are calculated and shown
in Figure 1. Assuming that fix pattern and banding noise are insignificant, this figure presents a convincing
evidence that noise variance scales linearly with signal strength for the cameras considered. In the subsequent
analysis, slope and intercept in Figure 1 were calculated using total least square fitting. From them, α and β
noise parameters used in (1) and (3) below can be estimated (for the purpose of fitting model to the data).
Automatic methods for determining α and β parameters have been proposed previously,6–9 but this topic is
outside the scope of this article.

The characteristics of red, green, and blue channels are very similar in Figure 1. This is consistent with the
fact that the gain and timing registers on a typical color image sensor is set globally, and there are no major



(a) Nikon D90 (b) Canon 5D Mark II (c) Sony α57

Figure 1. Measurements produced from a picture of Gretagmacbeth ColorChecker. The sample means of the pixel values
observed within the same “squares” were plotted against the sample variances. (a) Raw sensor measurements acquired with
Nikon D90 DSLR; (b) Raw sensor measurements acquired with Canon 5D Mark II DSLR; (c) Raw sensor measurements
acquired with Sony α57 DSLR.

architectural differences in pixel sensors other than the absorptive color filters. As noise variance is strictly a
function of the photon count and photon energy absorbed by the photodiode, the noise invariance to color filter
is not surprising. On the other hand, a blue filter absorbs more light than green, limiting the number of photons
that would reach the photodiode on a blue pixel. As proper white/color balancing is required, blue channel
signal (and noise) is typically boosted more than green. Hence “post white balancing” noise variance in the blue
channel significantly higher than green, a phenomenon that is widely reported.

3.2 SD-AWGN and Poisson Distributions

Let ξ ∼ N (0, 1). Then SD-AWGN model of an observation variable h takes the following form:

h = αg + β

g = πf +
√
πfξ

(1)

where f is the true underlying light intensity and π is exposure. Here, the coupling between the signal and the
noise variance arises by

√
πf term, and the signal independent noise occurs as a result of β term (see below).

The noise parameters α and β transform random variable g to yield an observation variable h whose variance is
given by an affine relation

h|f ∼ N
(
απf + β, α(E{h|f} − β)

)
. (2)

It is worth noting that although this affine relation between the mean and variance of h is in agreement with
Figure 1,10 the Gaussianity of the distribution is often left unjustified in the literature.

For the Poisson distribution, pixel observation h′ follows from the model:

h′ = αg′ + β

g′ ∼ P(πf),
(3)

where α and β are the noise parameters relating Poisson variable g′ and the observation h′. As before, the mean
and the variance of the observations are in agreement with Figure 1:

E{h′|f} =απf + β (4)

var{h′|f} =α(E{h′|f} − β). (5)

The fact that Poisson is a well accepted distribution for modeling photon emission suggests that the Poisson
observation h′ would match the actual sensor distribution better than the SD-AWGN observation h. Poisson on
its own does not reflect other sources of sensor noise, such as Fano and dark current, however.
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Figure 2. Q-Q plot comparing empirical sensor data to SD-AWGN and Poisson distribution models on red, blue and two
green channels. Raw sensor measurements acquired with Nikon D90 DSLR, Canon 5D Mark II DSLR, and Sony α57
DSLR.

3.3 Quantile Analysis

Attributing the linearity in Figure 1 to the photon emission process, which is classically modeled as Poisson
distributed, seems sensible at first glance. In practice, the photoelectric effects that is responsible for photon-to-
electron conversion is also a source of heteroskedastic variabilities. Though SD-AWGN and Poisson are widely
used to capture the heteroskedastic behavior,6–9 the level of rigor employed to compare the noise models below
extends beyond what was considered in the past.

Quartile analysis is a robust way to compare the distribution of data and model. Q-Q plot is defined by the
parametric curve (x(t), y(t)) defined by

x(t) = F−1model(t), y(t) = F−1data(t),

where Fdata and Fmodel are cumulative distribution functions of empirical data and model distributions, respec-
tively, and t ∈ [0, 1]. Important feature of the Q-Q plot is that the curve lies on the 45◦ line if the empirical data
and model distributions are identical; and is linear (but not 45◦) if the data and the model variables are related
by an affine transform (as in (1) and (3)). The differences in the data/model tails are visible if the curve strays
from this line.

In the subsequent analysis, we first computed noise parameters α and β by fitting a line to Figure 1. Choosing
a ColorChecker square (that is free of saturation), and then approximated the distribution of the pixels in this
square by (1) and (3) using the ensemble mean E{h|f} as a parameter in addition to α and β. Q-Q plot comparing
(1) and (3) to the empirical distribution of the pixels inside the ColorChecker square is shown in Figure 2. The
model matches the sensor noise exactly if the plot lies exactly on the dotted line, which was calculated based on
α and β.

Based on this analysis, Poisson and SD-AWGN have heavier positive tail and shorter negative tail than
the empirical sensor data. As a general trend, Poisson’s positive tail and SD-AWGN’s negative tail are better



(a) Nikon D90 (b) Canon 5D Mark II (c) Sony α57

Figure 3. Q-Q plot comparing empirical wavelet data to SD-AWGN and Irwin distribution models on red, blue and two
green channels. Raw sensor measurements acquired with Nikon D90 DSLR, Canon 5D Mark II DSLR, and Sony α57
DSLR.

matched with the empirical sensor data. Readers are cautioned that this graph does not imply that Poisson and
SD-AWGN are better models for high and low intensity light, respectively. In fact, the larger/smaller sensor
values represent positive and negative “noise” because each plot in Figure 2 assumes constant light intensity,

4. APPROXIMATION TO HAAR WAVELET NOISE

4.1 SD-AWGN and Skellam Distributions

Many image denoising methods are designed to operate in a (linear) transform domain. Among the popular
transforms are wavelet and discrete cosine transforms. In order for these image denoising techniques succeed, it
is important that the noise distribution is accurately modeled, especially the rate of tail decay and the degree of
concentration near zero. To understand the effects that these transforms have on the noise models, we consider
Haar wavelet transform. Haar wavelet transform is a convenient choice for this study because the effect it has
on SD-AWGN and Poisson variables are well understood. Let hi and h′i be independent ith pixel SD-AWGN
and Poisson variables in (1) and (3), respectively (gi defined similarly, etc.). Then Haar coefficient models are:

w := h1 − h2 = α(g1 − g2︸ ︷︷ ︸
s

), w′ := h′1 − h′2 = α(g′1 − g′2︸ ︷︷ ︸
s′

)

Under this scenario, we expect

s|f ∼ N
(
πf1 − πf2,E{h1|f1}+ E{h2|f2} − 2β

)
(6)

On the other hand, Haar transformed Poisson results is a Skellam distribution,11,12 as follows:

s′|f ∼ Skellam(πf1 − πf2,E{h1|f1}+ E{h2|f2} − 2β). (7)

In the special case that f1 = f2, the above distribution is called Irwin distribution.13

4.2 Quantile Analysis

We now repeat the quantile analysis for the Haar wavelet coefficients. Noise parameters α and β are computed
as before. Because Q-Q plot requires sufficiently large number of samples, however, we cannot simply take the
ensemble averages of pixel values in each ColorChecker square. Instead, we simulate the Haar coefficients in
two ways. First, for the special case of f1 = f2, we randomly partition 50% of pixels in a chosen ColorChecker
square and call them h1; the remainder of the pixels are referred to as h2. The empirical wavelet coefficients
are generated from a randomized pair-wise subtraction w = h1 − h2, all of which are assumed to be drawn from
the same distribution. These empirical wavelet coefficients are compared to SD-AWGN (6) and and Skellam (7)
variables using Q-Q plots. Figure 3 shows representative Q-Q plot examples from each camera. As a general
trend, Irwin and SD-AWGN models have shorter tails than the distribution of empirical wavelet coefficients.



(a) Nikon D90 (b) Canon 5D Mark II (c) Sony α57

Figure 4. Q-Q plot comparing empirical wavelet data to SD-AWGN and Skellam distribution models on red, blue and
two green channels. Raw sensor measurements acquired with Nikon D90 DSLR, Canon 5D Mark II DSLR, and Sony α57
DSLR.

Between the two models, however, Irwin’s longer positive and negative tails clearly fit the data better than
SD-AWGN.

Second, we simulate the scenario of f1 > f2 by choosing two ColorChecker squares. The empirical wavelet
coefficients are generated by randomly sampling a pixel from each square and taking their differences. Again,
the empirical wavelet coefficients can safely be assumed to be drawn from the same distribution, and they are
compared to SD-AWGN and Skellam variables of (6) and (7) using Q-Q plots. The results in Figure 4 show
that the positive tail of empirical wavelet coefficients is better represented by Skellam distribution than the
SD-AWGN. The Skellam and SD-AWGN distribution fit the negative tail for Canon and Sony cameras better
than the Nikon.

5. CONCLUSION

In this article, we discussed varioius sources of image sensor noise and provided a comprehensive characterization
of random noise in image sensors. We compared the widely used SD-AWGN/Poisson/Irwin/Skellam distribution
models to the distribution of the empirical sensor data using quantile analysis. Overall, the distribution of
empirical sensor measurements has a longer tail than any models we considered. In the pixel domain, positive
and negative tails were better approximated by Poisson and SD-AWGN, respectively. It suggests that a SD-
AWGN-Poisson hybrid may improve the overall noise characterization. Irwin/Skellam were clearly better fit for
the Haar wavelet coefficients than SD-AWGN. In practice, we expect Poisson-based image denoising methods
to be better suited for processing real sensor data compared to the SD-AWGN-based ones. In fact, denoising
methods that make use of even heavier noise tail is likely to improve performance for real sensor data. As future
work, we will also consider combined AWGN-Poisson noise model.
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